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Transition at dissipative scales in large-Reynolds-number turbulence
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Among the available diagnostics of turbulence, the flatness of the velocity derivatives is particularly inter-
esting because it represents a straightforward test of Kolmogorov theory, and provides a quantitative estimate
for intermittency effects. It is commonly considered that the flatness factor increases with the Reynolds
number, following a power law at high Reynolds numbers. At variance with this picture, evidence for a
transitional behavior, taking place around the Taylor microscale Reynolds numberRl5700, has been recently
obtained in several experiments. In the present paper we study this transition in detail, and show it has the
characteristics of a second order phase transition. We propose a physical picture for this transition, based on
worm vortex breakdown, which leads as to suggest that intense sub-Kolmogorov structures might develop
above the transition point. These results indicate that the existence of an asymptotic state at infinite Reynolds
number may become questionable and more generally, that our current views on dissipative range intermittency
probably need to be revised
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For 50 years, measurements have supported the idea
at high Reynolds numbers, turbulent flows develop s
similar ranges of scales across which the energy, injecte
large scales, cascades towards smaller and smaller scale
til it gets burned. This picture was proposed 60 years ago
Kolmogorov@1#. It received experimental support in sever
respects, the most famous being the omnipresence ofk25/3

energy spectra in turbulent flows@2#. The cascade picture ha
been refined many times, along different lines of thought
incorporate intermittency and anisotropy effects, but it h
never been durably challenged@3#.

For decades, all measurable implications of the casc
picture have been subjected to experimental check. Th
the case for the Reynolds number dependence of the flat
of the longitudinal velocity derivatives, defined by

F5

K S ]u

]xD 4L
K S ]u

]xD 2L 2 , ~1!

in which u is the flow component along directionx. This
factor represents a direct signature of small scale inter
tency. The larger the flatness factor, the more intermittent
system.F may also be related to the fluctuations of the e
ergy dissipation, and, under some assumptions, to the l
acceleration of fluid particles. Cascade models predict
flatness grows as a power law with the Reynolds number@3#.
At the moment, several collections of numerical and exp
mental data are available. The latest review, published
1997, shows thatF keeps increasing with the microsca
Reynolds number@4#. The corresponding plot is shown i
Fig. 1. It is generally considered that a power law provid
an acceptable fit to the measurements, over a range of v
tion of the microscale Reynolds numberRl covering two
decades, between 200 and 20 000. In this respect, the
which is currently proposed@5# has the following expression
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0.35.

Rl is the microscale Reynolds number, a quantity ba
on an internal flow scale~the Taylor scale!, and which, for
the flows considered, is proportional to the square root of
large scale Reynolds number. The existence of a posi
exponent reveals substantial deviations between Kolmogo
theory ~which predictsF is a constant! and experiment, and
provides experimental support to multifractal modeling@3#.
Incidentally, the exponent is found incompatible with esse
tially all the existing structural models of turbulence, jeop
dizing their relevance to the description of turbulence sta
tics, despite their appealing physical content.

In recent years, our group conducted a series of exp
ments in low temperature helium gas, in the hope of mea
ing, with an improved accuracy, the evolution, with the Re
nolds number, of the aforementioned flatness factor@6,7#.
The experiments were performed between counter-rota
disks, equipped with blades, and the measurement was m
with hot wires, designed to work at low temperatures. T

FIG. 1. Plot of the flatness versus the Reynolds number,
lected by Sreenivasan and Antonia.
©2002 The American Physical Society01-1
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probe typically resolved the Kolmogorov scale, had a ti
response comparable to the Kolmogorov time; moreover,
statistics was comfortably well converged. It came as a
prise that instead of a power law, we observed a transitio
behavior: we found that the flatness factor first increased
to Rl5700, then decreased and eventually increased a
~see Fig. 3!. Much effort was spent to identify possible art
facts @8,9#, and it was concluded that such a possibility
unlikely @10#. The effect was further confirmed on investiga
ing the higher order moments of the velocity derivativ
~@7,11#!. The quality of the measurement technique lead
to this observation was further exploited to check the K
mogorov equation with unprecedented accuracy@12#, within
a range comfortably encompassing the transitional reg
Later, by using the same apparatus, but implementing a
ferent flow configuration, we came to suggesting that
transition is a universal phenomenon@13#. It should be noted
that the existence of such a transition does not contra
previous measurements made on other systems: due to
rather large experimental uncertainty of such measureme
and the poor coverage of the range 700–1000~see Fig. 1, it
is hard to decide whether a transition takes place or
aroundRl5700. On the other hand, if one adds our data
the compilation of Fig. 1, one sees the existence of a tra
tional behavior is consistent with the whole set of data~see
Fig. 2!.

It turns out that, in a recent study, Bruce Pearson@14#
showed that a similar transition takes place in the wake p
duced by a porous plate. He reached this conclusion by u
a classical wind tunnel, and standard hot wire anemome
He observed that the flatness factor of the longitudinal
rivatives first increases up toRl around 700, then decrease
and eventually increases again. The data, shown in the
of Fig. 3, is strikingly comparable to our observations. No
we can take as a serious possibility that the transitional
havior we observed several years ago is an intrinsic prop
of turbulence, since at the moment it has been observed i
flow configurations where accuracy requirements could
met. Along this line of thought, the supposed establish

FIG. 2. Plot of the flatness versus the Reynolds number,
lected by Sreenivasan and Antonia.
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plots of these quantities will probably have to be entire
reconsidered~see Fig. 2!, along with their current interpreta
tion.

Prompted by Bruce Pearson’s results, we found it use
to report a further analysis of the phenomenon. In this pa
we investigate in detail the ‘‘transitional behavior’’ observe
in the helium experiment; we show that the transitional b
havior is not just a kink on a curve, or a crossover pheno
enon, but appears to have the characteristics of a sec
order phase transition. We discuss a possible interpretatio
this result, referring in particular to a scenario anticipated
years ago by Jimenezet al. @16#, and which we offer to com-
plete.

The data we analyze here has been obtained in low t
perature helium gas, between counter-rotating disks. Som
the measurement has already been published~see@7#!, but
not in the form we propose here. We refer the reader to R
@6,7# for more detail on the experiment. We call this data
~a!. In the present paper, we also incorporate a set of m
surements made in slightly different conditions~we added a
small grid in the flow, far away from the probe!, with a

l- FIG. 3. Plot of the flatness of the longitudinal velocity deriv
tives versus the microscale Reynolds numberRl for data set~a!; the
inset shows Pearson’s measurements of the same quantity, con
ing the transitional behavior aroundRl5700.

FIG. 4. Typical energy spectrum, obtained forRl51350, for set
~a!.
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TRANSITION AT DISSIPATIVE SCALES IN LARGE . . . PHYSICAL REVIEW E 65 066301
modified probe system, allowing us to obtain an improv
ratio signal over noise. This set is called set~b!. A typical
spectrum we obtained is displayed in Fig. 4; it illustrat
what we believe to be an excellent quality of measureme

The plots showing the transitional behavior are shown
Fig. 3. The quantity we measure is the flatness of the lon
tudinal velocity derivative. In practice, to measure this qu
tity, we first determine the flatness of the velocity increme
defined by

F5
^@u~x1r !2u~x!#4&

^@u~x1r !2u~x!#2&2
,

whereu is the velocity component along the mean flow, a
x and r are coordinates parallel to the mean flow and
angular brackets mean time averaging. To determine the
ness of the derivative, we extrapolateF(r ) down to zero
separations.

In Fig. 3 each point is an average between itself and
two nearest neighbors. The range of the Reynolds num
was sufficiently well resolved to perform this operatio
without deteriorating the resolution, in terms ofRl . By do-
ing so, we could reduce the scatter to a few percent, whic
one order of magnitude better than previous measureme
Owing to the complexity of the evolution of the flatne
factor with Rl , proposing a fit for the experimental data
not straightforward; the simplest approach seems to ass
we have a transition, and we analyze it using the usual
resentations of critical phenomena. Along this line
thought, a critical value for this transition and for set~a! is

Rlc5650.

The corresponding critical flatness isFc51262.
We may further, as in critical phenomena, define two

gions, below and above the postulated critical point. Bel
the critical point, we may fit the flatness factor by the fo
lowing power law:

F0~Rl!50.37Rl
0.54.

A similar formula has already been proposed before~@7#!,
in the context of a structural interpretation of the flatne
evolution. Above the transition, we may write, still in th
spirit of critical phenomena, a formula forF(Rl):

F~Rl!5F0~Rl!1G~Rl!

and determineG. FunctionG is plotted in Figs. 5 and 6 as
function of Rl and, on a logarithmic plot, as a function o
Rl2Rlc , respectively. The transition is rather neat in Fig.
As shown in Fig. 6, one may propose the following law f
G:

G50.02 ~Rl2Rlc!
0.5.

There is thus a critical exponent, which turns out to
close to 0.5 over one decade of variation ofRl ; note, how-
ever, the accuracy on the estimate of the exponent is p
Exponents lying in the range 0.4–0.6 would be acceptabl
well; the coefficient 0.02 does not provide much more th
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an order of magnitude for the prefactor. At largerRl , and up
to the largest Reynolds number we have, it appears that fu
tion G tends to level off. Nonetheless, more data are nee
to ascertain whether there is a plateau in this range of R
nolds numbers. The same analysis can be carried out fo
hyperflatness factors of orders 5 and 6, leading to sim
results.

In fact, the transition we display here is not limited to th
dissipative range of scales; it also affects scales intermed
between the dissipative and the inertial range, in a way
dissipative and inertial ranges of scales may behave dif
ently with respect to the Reynolds number. In particular,
width of the zone separating the dissipative from the iner

FIG. 5. Plot of functionG, defined above, using semilogarithm
scales; the plot suggests a transitionlike behavior.

FIG. 6. Plot of functionG versus the difference between th
actual Reynolds number and the critical one; disks are data se~a!
and triangles are data set~b!. As is usually done in critical phenom
ena, we adjust the critical Reynolds number for each data set.
set ~b!, the critical point is located atRl5670. The full line has a
slope equal to 0.5, and is shown to guide the eyes.
1-3
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domains undergoes a transitional behavior, consistent
the one seen on the flatness measurements. To deter
such a width, we use a method proposed by Stolovitskyet al.
@18#: the structure function of order 4, defined by

S45^@u~r 1x!2u~x!#4&,

whereu is the component along the mean flow~along which
the coordinatesx andr are defined!, and the angular bracket
mean statistical averaging. Following Stolovitskyet al., S4 is
fitted by using the formula

S4~r !5
Ar4

@11~B/r !2#0.7
.

In this formula,h is the Kolmogorov scale andA andB are
fitting parameters; the parameterB21/2 represents the width
in units of the Kolmogorov scale, of the region separating
dissipative from the inertial domains. The plot ofB21/2 ver-
susRl is shown in Fig. 7 for data set~a!. At low Rl , we
recover previous estimates~see@18#!; nonetheless, one sees
transition aroundRl5700, whose characteristics are cons
tent with those discussed in the preceding section. Thus
width of the intermediate domain of scales, separating
dissipative from the inertial ranges, also undergoes a tra
tion, similar to the one previously described, and is locate
the same position on theRl axis.

Concerning the inertial range, we did not observe a
measurable transitional behavior@19#. The transition is there-
fore limited to the dissipative range of scales and to the
termediate region between the dissipative and inertial ran

We now come to the discussion of this transition. T
possibility to physically understand the transition is to
voke vortex breakdown@15#. This interpretation bears on th
premise that the dissipative range of scales is organized
vortex filaments~called worms!, with diameters on the orde
of a few Kolmogorov scales, and with a velocity differen
across them equal to a fraction of the standard deviation
the velocity field@16#. It is not a complicated matter to sho
that these worms control the fourth order moment of

FIG. 7. Plot of the width of the region separating the dissipat
from the inertial range versus the Reynolds number, measure
terms of the Kolmogorov scaleh, for data set~a!.
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velocity derivatives, while the second order moment is co
trolled by the background fluctuations@7#. Accordingly, the
flatness factor, which is the ratio between the two, can
estimated. By assuming the worm density is a constant,
gets the result that the flatness increases asRl

1/2, which may
provide an interpretation for the exponent found in the p
transitional regime. On the other hand, as the Reynolds n
ber increases, the internal Reynolds number of the wo
increases asRl

1/2 ~@16#!; it follows that vortex breakdown
should occur in some~undetermined! upper range of the
Reynolds number, as conjectured in Ref.@16#; a vortex
breakdown of the worms would lead to an increase of th
size, and for a probe resolving no more than the Kolmogo
scale, this would induce a reduction of the highest gradie
and, in turn, a decrease of the flatness factor.

However, since the worms characteristics are broadly
tributed, one could expect, upon an increase of the Reyn
number, that the decrease of the flatness factor is a prog
sive process, possibly masked by other effects, such as
reduction of the Kolmogorov scale which favors an inten
fication of the gradients; this contrasts with our experime
and that of Bruce Pearson as well, which both indicate
sharp transition, with a possible discontinuity of the deriv
tives at the transition point. The sharpness of the transi
may be accounted for if one assumes the worms are co
lated. Such a correlation has been underlined in recent s
ies, indicating that worms are organized into internally c
herent clusters@17#. In this context, a second order transitio
can be envisaged. In condensed matter words, we would
from a paramagnetic to a ferromagnetic situation. At the m
ment, however, this may be taken as a possibility, wh
certainly requires further work to be assessed. In this resp
additional information usingX wire probes, or a numerica
analysis of the flow field close to the transition, may be e
tremely valuable.

An interesting consequence of these arguments conc
the infinite Reynolds number limit of turbulent flows: if vor
tex breakdown occurs, worms debris will be generated. T
characteristics of these new~probably intense! structures are
difficult to foresee, but one may argue that, as the Reyno
number is increased well beyond the transition point,
debris will in turn become unstable~see @20#!; there isa
priori no strong reason the sequence may stop. It is thus
ascertained we ever reach an asymptotic state, free of b
cation at infinite Reynolds numbers, as cascade theories
pose. An experimental implication of this discussion is th
one must resolve the debris aboveRlc to measure flatnes
factors; since most of the available measurements do
resolve more than one Kolmogorov scale, one may sus
the flatness factors published in Ref.@4# are substantially
underestimated in the upper Reynolds number range. All fl
ness measurements forRl.1500 should perhaps be redon
using probes resolving sub-Kolmogorov scales.

If one considers the statistical approaches, one may
that, at the moment, there is no way to explain the transiti
the proof being that it has never been predicted. It can p
haps be proposed that the transition is a finite Reyno

e
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number effect which statistical theories are not suppose
address; however, there is no guarantee that other transi
do not arise at higher Reynolds numbers: as discussed ab
the concept of an asymptotic state, free of transition at i
nite Reynolds numbers seems at the moment questiona

To conclude, we offer here a detailed characterization
transition, observed aroundRl5700, which may seriously
be taken as an intrinsic property of all high Reynolds num
turbulent flows . The main outcome of the analysis is that
transitional behavior has the characteristics of a second o
phase transition. Confirming the nature of the transit
would require additional measurements, similar to those
rently carried out for critical phenomena. What we can s
at the moment, is that we assume a transition provide
simple and consistent framework for analyzing the da
Concerning the interpretation, one must warn the reader
our proposal, although physically plausible, has no theor
cal background at the moment. What we propose here i
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link the transition we observe to a breakdown of the worm
in a context where some internal correlation exists. Suc
proposal raises several issues, in particular the nature o
turbulent state at infinite Reynolds numbers, the reliability
the flatness measurements above the transition point and
existence of sub-Kolmogorov vortex filaments; we also n
that the existence of a transition at such a high Reyno
number fits well with a structural approach to turbulence,
somehow challenges the statistical view, which so far is c
sidered as the most appropriate road to ‘‘solving’’ the turb
lence problem.
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