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Transition at dissipative scales in large-Reynolds-number turbulence
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Among the available diagnostics of turbulence, the flatness of the velocity derivatives is particularly inter-
esting because it represents a straightforward test of Kolmogorov theory, and provides a quantitative estimate
for intermittency effects. It is commonly considered that the flatness factor increases with the Reynolds
number, following a power law at high Reynolds numbers. At variance with this picture, evidence for a
transitional behavior, taking place around the Taylor microscale Reynolds niRpb€f00, has been recently
obtained in several experiments. In the present paper we study this transition in detail, and show it has the
characteristics of a second order phase transition. We propose a physical picture for this transition, based on
worm vortex breakdown, which leads as to suggest that intense sub-Kolmogorov structures might develop
above the transition point. These results indicate that the existence of an asymptotic state at infinite Reynolds
number may become questionable and more generally, that our current views on dissipative range intermittency
probably need to be revised
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For 50 years, measurements have supported the idea that F~Rg'35.
at high Reynolds numbers, turbulent flows develop self-
similar ranges of scales across which the energy, injected at . _ .
large scales, cascades towards smaller and smaller scales un-R IS the microscale Reynolds number, a quantity based
til it gets burned. This picture was proposed 60 years ago b nan mternallflow sc_aléthe Ta_ylor scalk and which, for
Kolmogorov|[1]. It received experimental support in several he flows considered, is proportional to t_he square root of.t.he
respects, the most famous being the omnipresende &f large scale Reynolds ”“”ﬁber- Th‘? existence of a positive
energy spectra in turbulent flof8]. The cascade picture has exponent reveals §ubst§1nt|al deviations betweeln Kolmogorov
been refined many times, along different lines of thought, tc}heo_ry(whlch p_redlctsF IS a constar)tar_ld experiment, and
incorporate intermittency and anisotropy effects, but it had’roV ides experimental support to rr_multlfracta_l model[lﬁkj.
never been durably challengél. pmdentally, thg gxponent is found incompatible W|th.essen-
For decades, all measurable implications of the cascaa&.al!y all th.e existing structural modgl§ of turbulence, jeopar-
picture have been subjected to experimental check. This | izing their relevance to the description of turbulence statis-

the case for the Reynolds number dependence of the flatnelES: despite their appealing physical content. . .
of the longitudinal velocity derivatives, defined by In recent years, our group conducted a series of experi-
' ments in low temperature helium gas, in the hope of measur-

ing, with an improved accuracy, the evolution, with the Rey-

au\4 nolds number, of the aforementioned flatness faf€v].
<(5_X> > The experiments were performed between counter-rotating
F=——5>, (1)  disks, equipped with blades, and the measurement was made
<(a_u) > with hot wires, designed to work at low temperatures. The
oX
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in which u is the flow component along directiox This

factor represents a direct signature of small scale intermit-
tency. The larger the flatness factor, the more intermittent the
system.F may also be related to the fluctuations of the en- "
ergy dissipation, and, under some assumptions, to the loce
acceleration of fluid particles. Cascade models predict the 10

flatness grows as a power law with the Reynolds nurf®er

At the moment, several collections of numerical and experi-
mental data are available. The latest review, published in R
1997, shows thaF keeps increasing with the microscale -
Reynolds numbef4]. The corresponding plot is shown in
Fig. 1. It is generally considered that a power law provides
an acceptable fit to the measurements, over a range of varie
tion of the microscale Reynolds numbRy covering two
decades, between 200 and 20000. In this respect, the law FIG. 1. Plot of the flatness versus the Reynolds number, col-
which is currently proposelb] has the following expression: lected by Sreenivasan and Antonia.
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FIG. 2. Plot of the flatness versus the Reynolds number, col- FIG. 3. Plot of_the flatness of the longitudinal velouty.derlva-
lected by Sreenivasan and Antonia. .tlves versus the mlcr(?scale Reynolds nuniRefor data se’(a), the .
inset shows Pearson’s measurements of the same quantity, confirm-
ing the transitional behavior arouri®] = 700.
probe typically resolved the Kolmogorov scale, had a time
response comparable to the Kolmogorov time; moreover, thg|ots of these quantities will probably have to be entirely

statistics was comfortably well converged. It came as a sUfreconsideredsee Fig. 2, along with their current interpreta-
prise that instead of a power law, we observed a transitionggp.

behavior: we found that the flatness factor first increased up prompted by Bruce Pearson’s results, we found it useful
to R,=700, then decreased and eventually increased agaig report a further analysis of the phenomenon. In this paper
(see Fig. 3 Much effort was spent to identify possible arti- we investigate in detail the “transitional behavior” observed
facts[8,9], and it was concluded that such a possibility isin the helium experiment; we show that the transitional be-
unlikely [10]. The effect was further confirmed on investigat- havior is not just a kink on a curve, or a crossover phenom-
ing the higher order moments of the velocity derivativesenon, but appears to have the characteristics of a second
([7,11]). The quality of the measurement technique leadingorder phase transition. We discuss a possible interpretation of
to this observation was further exploited to check the Kol-this result, referring in particular to a scenario anticipated 10
mogorov equation with unprecedented accurfg@d], within ~ years ago by Jimene al.[16], and which we offer to com-
a range comfortably encompassing the transitional regiorPlete.
Later, by using the same apparatus, but implementing a dif- The data we analyze here has been obtained in low tem-
ferent flow configuration, we came to suggesting that thdPerature helium gas, between counter—rota_tmg disks. Some of
transition is a universal phenomenid8]. It should be noted the measurement has already been publisisee[7]), but
that the existence of such a transition does not contradictt N the form we propose here. We refer the reacjer to Refs.
previous measurements made on other systems: due to t 7] for more detail on the experiment. We call this data set
rather large experimental uncertainty of such measurementga' In the present paper, we also Incorporate a set of mea-
and the poor coverage of the range 700-10& Fig. 1, it sUrelrInen_:js _ma(:]e I?I S“g?tly d|ffere]|:|t conﬁmome ad.dﬁd a
is hard to decide whether a transition takes place or no?ma grid in the flow, far away from the proewith a
aroundR, =700. On the other hand, if one adds our data to
the compilation of Fig. 1, one sees the existence of a transi-
tional behavior is consistent with the whole set of datee E ]
Fig. 2. 3 -5/3 3
It turns out that, in a recent study, Bruce Pear§bd] w0 b 2
showed that a similar transition takes place in the wake pro- ; ]
duced by a porous plate. He reached this conclusion by usin&
a classical wind tunnel, and standard hot wire anemometry™ g E
He observed that the flatness factor of the longitudinal de- e 1
rivatives first increases up ®, around 700, then decreases, 10 | B
and eventually increases again. The data, shown in the inse ;
of Fig. 3, is strikingly comparable to our observations. Now :
we can take as a serious possibility that the transitional be: ~ 10° il
havior we observed several years ago is an intrinsic property
of turbulence, since at the moment it has been observed in all
flow configurations where accuracy requirements could be FIG. 4. Typical energy spectrum, obtained Ry= 1350, for set
met. Along this line of thought, the supposed establisheds).

k (em™)

066301-2



TRANSITION AT DISSIPATIVE SCALES IN LARGE . .. PHYSICAL REVIEW E 65 066301

modified probe system, allowing us to obtain an improved : ' T T
ratio signal over noise. This set is called gbl. A typical
spectrum we obtained is displayed in Fig. 4; it illustrates
what we believe to be an excellent quality of measurements 04 ¢
The plots showing the transitional behavior are shown in £

Fig. 3. The quantity we measure is the flatness of the longi- *2 * : g E
tudinal velocity derivative. In practice, to measure this quan- o ‘e E
tity, we first determine the flatness of the velocity increment, 9 —..‘—“q: E
defined by : : £
02 | : 3

o ([uex+n—ux)1’) ; i :

- (Tu(x+r)— U(X)]2>2, 04 | ; critical point

100 ' T i

whereu is the velocity component along the mean flow, and

x andr are coordinates parallel to the mean flow and the R,

angular brackets mean time averaging. To determine the flat-

ness of the derivative, we extrapold€r) down to zero

separations.

In Fig. 3 each point is an average between itself and the

two nearest neighbors. The range of the Reynolds numbem order of magnitude for the prefactor. At lardggr, and up

was sufficiently well resolved to perform this operation, to the largest Reynolds number we have, it appears that func-

without deteriorating the resolution, in termsRf. By do-  tion G tends to level off. Nonetheless, more data are needed

ing so, we could reduce the scatter to a few percent, which it ascertain whether there is a plateau in this range of Rey-

one order of magnitude better than previous measurementgolds numbers. The same analysis can be carried out for the

Owing to the complexity of the evolution of the flatness hyperflatness factors of orders 5 and 6, leading to similar

factor with R, , proposing a fit for the experimental data is results.

not straightforward; the simplest approach seems to assume In fact, the transition we display here is not limited to the

we have a transition, and we analyze it using the usual repdissipative range of scales; it also affects scales intermediate

resentations of critical phenomena. Along this line ofbetween the dissipative and the inertial range, in a way that

thought, a critical value for this transition and for ga} is dissipative and inertial ranges of scales may behave differ-

ently with respect to the Reynolds number. In particular, the

R\¢=650. width of the zone separating the dissipative from the inertial

FIG. 5. Plot of functionG, defined above, using semilogarithmic
scales; the plot suggests a transitionlike behavior.

The corresponding critical flathesskg=12+2.

We may further, as in critical phenomena, define two re-
gions, below and above the postulated critical point. Below
the critical point, we may fit the flatness factor by the fol-
lowing power law:

Fo(R,)=0.3R%%, G(R,)

A similar formula has already been proposed befpré),
in the context of a structural interpretation of the flatness
evolution. Above the transition, we may write, still in the

spirit of critical phenomena, a formula fé1(R,): 01 L

F(Ry\)=Fo(R\)+G(R))

and determinds. FunctionG is plotted in Figs. 5 and 6 as a

function of R, and, on a logarithmic plot, as a function of

R\ —R,¢, respectively. The transition is rather neat in Fig. 5.
As shown in Fig. 6, one may propose the following law for 1
G:

10*

e

G=0.02 (R,—Ry)°> '
) - ) FIG. 6. Plot of functionG versus the difference between the
There is thus a critical exponent, which turns out to beactual Reynolds number and the critical one; disks are datéaset
close to 0.5 over one decade of variationRyf; note, how-  and triangles are data s@. As is usually done in critical phenom-
ever, the accuracy on the estimate of the exponent is poogna, we adjust the critical Reynolds number for each data set. For
Exponents lying in the range 0.4—0.6 would be acceptable aset(b), the critical point is located &R, =670. The full line has a
well; the coefficient 0.02 does not provide much more tharslope equal to 0.5, and is shown to guide the eyes.
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velocity derivatives, while the second order moment is con-
trolled by the background fluctuatiofg]. Accordingly, the
flatness factor, which is the ratio between the two, can be
estimated. By assuming the worm density is a constant, one
gets the result that the flatness increaseﬁfﬁs which may
provide an interpretation for the exponent found in the pre-
transitional regime. On the other hand, as the Reynolds num-
ber increases, the internal Reynolds number of the worms
increases afkY? ([16])); it follows that vortex breakdown
should occur in soméundeterminefl upper range of the
Reynolds number, as conjectured in REI6]; a vortex
: e . breakdown of the worms would lead to an increase of their
size, and for a probe resolving no more than the Kolmogorov
scale, this would induce a reduction of the highest gradients
FIG. 7. Plot of the width of the region separating the dissipative@nd, in turn, a decrease of the flatness factor.
from the inertial range versus the Reynolds number, measured in However, since the worms characteristics are broadly dis-
terms of the Kolmogorov scalg, for data se(a). tributed, one could expect, upon an increase of the Reynolds
number, that the decrease of the flatness factor is a progres-
domains undergoes a transitional behavior, consistent withive process, possibly masked by other effects, such as the
the one seen on the flatness measurements. To determirgduction of the Kolmogorov scale which favors an intensi-
such a width, we use a method proposed by Stolovietlal.  fication of the gradients; this contrasts with our experiment,
[18]: the structure function of order 4, defined by and that of Bruce Pearson as well, which both indicates a
_ 4 sharp transition, with a possible discontinuity of the deriva-
Sy=([u(r+x)—u(x)1%, tives at the transition point. The sharpness of the transition
may be accounted for if one assumes the worms are corre-
lated. Such a correlation has been underlined in recent stud-
ies, indicating that worms are organized into internally co-
herent cluster§l7]. In this context, a second order transition
can be envisaged. In condensed matter words, we would shift
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whereu is the component along the mean fléalong which
the coordinateg andr are definegl and the angular brackets
mean statistical averaging. Following Stolovitsityal., S, is
fitted by using the formula

Aré from a paramagnetic to a ferromagnetic situation. At the mo-
S,(r)= o ment, however, this may be taken as a possibility, which
[1+(B/r)°]~ certainly requires further work to be assessed. In this respect,

additional information usingX wire probes, or a numerical

In this formula, 7 is the Kolmogorov scale andandB are  5n,)ysis of the flow field close to the transition, may be ex-
fitting parameters; the paramet®r ~'< represents the width, tremely valuable

Idn' umtstpf t?e Koi;nogorciy Tc(:jale, qf thgr:]eglc:nti:ﬁﬁzratmg the An interesting consequence of these arguments concerns
Issipative from fhe Inerfial domains. 'he plo Ve the infinite Reynolds number limit of turbulent flows: if vor-

susR, is shown in Fig. 7 for data s€g). At low R, , we breakd debris will b d. Th
recover previous estimatésee[18]); nonetheless, one sees atex reaxdown occurs, worms debris will be generated. The
' ' characteristics of these néjrobably intensestructures are

transition aroundR, =700, whose characteristics are consis- ificult 1o f but that the R Id
tent with those discussed in the preceding section. Thus, th%I Icult to foresee, but one may argue that, as the Reynolds

width of the intermediate domain of scales, separating th&Umber is increased well beyond the transition point, the
dissipative from the inertial ranges, also undergoes a transfi€Pris will in turn become unstablesee[20)); there isa
tion, similar to the one previously described, and is located aPiori no strong reason the sequence may stop. It is thus not
the same position on the, axis. ascertained we ever reach an asymptotic state, free of bifur-
Concerning the inertial range, we did not observe ampation at infinite Reynolds numbers, as cascade theories pro-
measurable transitional behav[d9]. The transition is there- POse. An experimental implication of this discussion is that
fore limited to the dissipative range of scales and to the inone must resolve the debris aboRg. to measure flatness
termediate region between the dissipative and inertial rangefactors; since most of the available measurements do not
We now come to the discussion of this transition. Theresolve more than one Kolmogorov scale, one may suspect
possibility to physically understand the transition is to in-the flatness factors published in Ré#] are substantially
voke vortex breakdowhl5]. This interpretation bears on the underestimated in the upper Reynolds number range. All flat-
premise that the dissipative range of scales is organized inteess measurements fB; >1500 should perhaps be redone
vortex filamentgcalled worm$, with diameters on the order using probes resolving sub-Kolmogorov scales.
of a few Kolmogorov scales, and with a velocity difference If one considers the statistical approaches, one may say
across them equal to a fraction of the standard deviation ahat, at the moment, there is no way to explain the transition;
the velocity field[16]. It is not a complicated matter to show the proof being that it has never been predicted. It can per-
that these worms control the fourth order moment of thehaps be proposed that the transition is a finite Reynolds
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number effect which statistical theories are not supposed think the transition we observe to a breakdown of the worms,
address; however, there is no guarantee that other transitioits a context where some internal correlation exists. Such a
do not arise at higher Reynolds numbers: as discussed aboy&rpposal raises several issues, in particular the nature of the
the concept of an asymptotic state, free of transition at infiturbulent state at infinite Reynolds numbers, the reliability of
nite Reynolds numbers seems at the moment questionablethe flatness measurements above the transition point and the
To conclude, we offer here a detailed characterization of &xistence of sub-Kolmogorov vortex filaments; we also note
transition, observed arouny =700, which may seriously that the existence of a transition at such a high Reynolds
be taken as an intrinsic property of all high Reynolds numbep,mper fits well with a structural approach to turbulence, but

turbulent flows . The main outcome of the analysis is that the;omehow challenges the statistical view, which so far is con-
transitional behavior has the characteristics of a second ordefyared as the most appropriate road to “solving” the turbu-

phase transition. Confirming the nature of the transitionle
would require additional measurements, similar to those cur-
rently carried out for critical phenomena. What we can say, This work was supported by the Centre National de la
at the moment, is that we assume a transition provides Recherche Scientifique, Ecole Normale Sigére, and the
simple and consistent framework for analyzing the datalniversites Paris 6 et Paris 7. We acknowledge valuable dis-
Concerning the interpretation, one must warn the reader thatussions with M. Nelkin, E. Bodenschatz, Z. Warhaft, A.
our proposal, although physically plausible, has no theoretiPumir, M. Vergassola, and J. Jimenez. We thank B. Pearson
cal background at the moment. What we propose here is ttor communicating his results prior to publication.

nce problem.
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would be to assume they have the form of vortex filaments,
immerged in a background field of intensilty and subjected

to a strain, locally generated by the worm, on the order of
u’/%. In such a situation, the limiting width of these subfila-
ments would be on the order pf7/u’ ~LR; " (in which v is

the kinematic viscosityy is the Kolmogorov scale, and is

the large scald, and the corresponding internal Reynolds
number would be on the order &*; the debris thus define
intense subkolmogorovian structures. Because their internal
Reynolds number increases wity , these subfilaments are in
turn expected to burst aR, is further increased. One may
iterate the argument for the next generations of debris; the
reasoning leads to defining a hierarchy of subkolmogorovian
structures, which successively become unstabl&ass in-
creased. A similar hierarchy was obtained bg]. However, in
their paper the authors conclude the system ultimately be-
comes stable at infinite Reynolds numbers.



